如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M。
(1)求证:△ADC≌△AEB ,
(2)判断△EGM是什么三角形,并证明你的结论;
(3)猜想线段BG、AF与FG的数量关系并证明你的结论。
如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上一点,连接 BD,AD,OC,∠ADB=30°.
(1)求∠AOC的度数;
(2)若弦BC=6cm,求图中阴影部分的面积.
如图,在平面直角坐标系xOy中,△AOB三个顶点的坐标分别为O(0,0)、A(﹣2,3)、B(﹣4,2),将△AOB绕点O逆时针旋转90°后,点A、O、B分别落在点A'、O'、B'处.
(1)在所给的直角坐标系xOy中画出旋转后的△A'O'B';
(2)求点B旋转到点B'所经过的弧形路线的长.
如图,在正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在格点(小正方形的顶点)上,将△ABC绕点A按逆时针方向旋转90°得到△AB1C1.
(1)在正方形网格中,画出△AB1C1;
(2)直接写出旋转过程中动点B所经过的路径长.
如图,在8×11的方格纸中,△ABC的顶点均在小正方形的顶点处.
(1)画出△ABC绕点A顺时针方向旋转90°得到的△A′B′C′;
(2)求点B运动到点B′所经过的路径的长度.
如图,已知矩形ABCD的边AB=4,BC=3,按照图示位置放置在直线AP上,然后转动,当它转动一周时,求顶点A经过的路线长.