已知二次函数.
(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;
(2)若该二次函数图象与x轴的交点为A,B,求△ABC的面积.
(每小题7分,共l4分)
(1)计算:-2-()-1×
+(1-
)0;
(2)化简:(a+2)(a-2)-(a-2)2.
(满分l4分)如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长度的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长度的速度向点B匀速运动.伴随着P,Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB—BC—CP于点E.点P,Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P,Q运动的时间是t s(t>O).
(1)当t=2时,AP=________,点Q到AC的距离是_________;
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,也请说明理由.
(满分l2分)如图,在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,点E是AD的中点,求证:CE⊥BE.
(满分l2分)如图,A,B两城市相距100 km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林保护区的范围在以P点为圆心,50 km为半径的圆形区域内.请问:计划修筑的这条高速公路会不会穿越保护区?为什么?(参考数据:≈1.732,
≈1.414)
(满分l2分)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=,BC=1,求⊙O的半径.