为了考察冰川融化的状况,一支科考队在某冰川上设定一个以大本营O为圆心,半径为4km 圆形考察区域,线段P1、P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是.以O为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别是(-4,9)、(-13,-3).
(1)求线段P1P2所在的直线对应的函数关系式;
(2)求冰川的边界线移动到考察区域所需要的最短时间.
在直角坐标系中,O为坐标原点. 已知反比例函数y=(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOB的面积为
.
(1)求k和m的值;
(2)点C(x,y)在反比例函数y=的图象上,求当1≤x≤3时函数值y的取值范围;
(3)过原点O的直线l与反比例函数y=的图象交于P、Q两点,试根据图象直接写出线段PQ长度的最小值.
已知:如图,在⊙O中M, N分别为弦AB, CD的中点,AB="CD," AB不平行于CD.
求证:∠AMN=∠CNM
下图是一个残破的圆片示意图。请找出该残片所在圆的圆心O的位置(保留画图痕迹,不必写作法);
如图,在平面直角坐标系中,矩形OABC的顶点A(0,3)、C(-1,0).将矩形OABC绕原点O顺时针方向旋转90o,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线经过点C、M、N.解答下列问题:
(1)求直线BB′的 函数解析式;
(2)求抛物线的解析式;
(3)在抛物线上求出使S△PB′′ C′=S矩形OABC的所有点P的坐标.
扇形AOB中,OA、OB是半径,且∠AOB=90°,OA=6,点C是AB上异于A、B的动点。过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE.(1)求证:OG=CH;
(2)当点C在AB上运动时,线段DE的长是否为定值?若为定值,请求出该值;否则,请说明理由;
(3)设CH,CD
,求
与
之间的函数关系式.