游客
题文

扇形AOB中,OA、OB是半径,且∠AOB=90°,OA=6,点C是AB上异于A、B的动点。过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE.
(1)求证:OG=CH;
(2)当点C在AB上运动时,线段DE的长是否为定值?若为定值,请求出该值;否则,请说明理由;
(3)设CH,CD,求之间的函数关系式.

科目 数学   题型 解答题   难度 中等
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

如图,点C、D 在线段AB上,E、F在AB同侧,DE与CF相交于点O,且AC=BD, CO=DO,.求证:AE=BF.

解不等式组:

.计算:

(本小题满分7分)
已知:等边三角形ABC
如图1,P为等边△ABC外一点,且∠BPC=120°.
试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;

(2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD

(本小题满分8分)
如图,抛物线>0)与y轴交于点C,与x轴交于A 、B两点,点 A在点B的左侧,且

(1)求此抛物线的解析式;
(2)如果点D是线段AC下方抛物线上的动点,设D点的横坐标为x,
△ACD的面积为S,求S与x的关系式,并求当S最大时点D的坐标;
(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点的平行四边形?若存在求点P坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号