为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:
运动鞋价格 |
甲 |
乙 |
进价(元/双) |
m |
m﹣20 |
售价(元/双) |
240 |
160 |
已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.
(1)求m的值;
(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?
如图,点A、B、D、在⊙O上,弦AE、BD的延长线相交于点C.。若AB是⊙O的直径,D是BC的中点.
(1)试判断AB、AC之间的大小关系,并给出证明;
(2)在上述题设条件下,△ABC还需满足什么条件,点E才一定是AC的中点?(直接写出结论)
如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30º,∠APB=60º.
(1)求证:PB是⊙O的切线;
(2)若⊙O的半径为2,求弦AB及PA,PB的长.
已知关于的一元二次方程
2-
-2=0.若x=-1是这个方程的一个根,求
的值和方程的另一根.
用一条长40cm的绳子怎样围成一个面积为75cm2的长方形?能围成一个面积为110cm²的长方形吗?如能,说明围法;若不能,说明理由.
如图,在⊙O中,AB、AC为互相垂直的两条弦,OD⊥AB于点D ,OE⊥AC于点E,若AB=8cm,AC=6cm求⊙O的半径.