游客
题文

如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.

(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;
(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;
(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

(本小题满分8分)已知函数是常数).
(1)求证:不论为何值,该函数的图象都经过y轴上的一个定点;
(2)若该函数的图象与x轴只有一个交点,求的值.

(本小题满分8分)已知:如图,在⊙O中,弦AB=CD.求证:AD=BC.

(本小题满分6分)已知抛物线过点C(5,4).
(1)求的值;
(2)求该抛物线顶点的坐标.

(本小题满分12分) 如图① 已知抛物线≠0)与x轴交于点A(1,0)和点B (-3,0),与y轴交于点C.

(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点N ,问在对称轴上是否存在点P,使△CNP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)如图②,若点E为第三象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.

(本小题满分10分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.

(1)求tan∠BOA的值;
(2)在坐标系中作出将△AOB绕原点O逆时针方向旋转90°后的△COD(点A的对应点是C点,点B的对应点D点),并写出C点、D点的坐标;
(3)将△OAB平移得到△O′A′B′,点A的对应点是A′,点B的对应点B′的坐标为(2,-2),在坐标系中作出△O′A′B′,并求出平移的距离.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号