为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:
组 别 |
频数 |
频率 |
145.5~149.5 |
1 |
0.02 |
149.5~153.5 |
4 |
0.08 |
153.5~157.5 |
20 |
0.40 |
157.5~161.5 |
15 |
0.30 |
161.5~165.5 |
8 |
0.16 |
165.5~169.5 |
m |
n |
合 计 |
M |
N |
(1)求出表中所表示的数分别是多少?
(2)画出频率分布直方图.
(3)全体女生中身高在哪组范围内的人数最多?
(本小题满分12分)
在中,角
所对的边
长分别为
,已知
.求:
(1)边的长;
(2)的面积
(本小题满分14分)
已知椭圆方程为(
)
,抛物线方程为
.过抛物线的焦点作
轴的垂线,与抛物线在第一象限的交点为
,抛物线在点
处的切线经过椭圆的右焦点
.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设为椭圆上的动点,由
向
轴作垂线
,垂足为
,且直线
上一点
满足
,求点
的轨迹方程,并说明轨迹是什么曲线?
(本小题满分14分)
已知等差数列的公差大于0,且
是方程
的两根,数列
的前
项的和为
,且
.
(1)求数列,
的通项公式;
(2)记,求证:
;
(3)求数列的前
项和.
(本小题满分14分)
已知函数
在点
处取得极值,并且在区间
上单调递减,在区间
上单调递增.
(1)求实数的值;
(2)求实数的取值范围.
(本小题满分13分)
已知等差数列的公差为
,前
项和为
,且满足
,
(1)试用表示不等式组
,并在给定的坐标系中画出不等式组表示的平面区域;
(2)求的最大值,并指出此时数列
的公差
的值.
[