设椭圆E中心在原点,焦点在x轴上,短轴长为4,点Q(2,)在椭圆上.
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且,求△OAB的面积的取值范围.
(3)过M()的直线
:
与过N(
)的直线
:
的交点P(
)在椭圆E上,直线MN与椭圆E的两准线分别交于G,H两点,求
的值.
.(本小题满分l0分)选修4—5:不等式选讲
已知函数.(I)求不等式
≤6的解集;(Ⅱ)若关于
的不等式
>
恒成立,求实数
的取值范围。
(本小题满分10分)选修4—4:坐标系与参数方程
在平面直角坐标系中,以原点
为极点,
轴为极轴建立极坐标系,曲线C1的方程
为(
为参数),曲线C2的极坐标方程为:
,若曲线C1与
C2相交于A、B两点. (I)求|AB|的值;(Ⅱ)求点M(-1,2)到A、B两点的距离之积.
(本小题满分10分)选修4—1:几何证明选讲
如图,AB为圆的直径,P为圆
外一点,过P点作PC
AB于C,交圆
于D点,PA
交圆于E点,BE交PC于F点.(I)求证:
;(Ⅱ)求证:
(本小题满分l2分)已知函数
,
∈R.
(I)讨论函数的单调性;
(Ⅱ)当时,
≤
恒成立,求
的取值范围
(本小题满分12分)
点P为圆:
(
>0)
上一动点,PD
轴于D点,记线段PD的中点M的运
动轨迹为曲线C.(I)求曲线C的方程; (II)若动直线与曲线C交于A、B两点,当△OAB(O是坐标原点)面积取得最大值,且最大值为1时,求
的值.