(本小题满分12分)下图是调查某地某公司1000名员工的月收入后制作的直方图.根据直方图估计:
(Ⅰ)该公司月收入在1000元到1500元之间的人数;
(Ⅱ)该公司员工的月平均收入;
(Ⅲ)该公司员工收入的众数;
(Ⅳ)该公司员工月收入的中位数;
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) |
8 |
8.2 |
8.4 |
8.6 |
8.8 |
9 |
销量y(件) |
90 |
84 |
83 |
80 |
75 |
68 |
(1)求回归直线方程=bx+a,其中b=-20,a=
-b
;
(2)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
已知等差数列的公差
=1,前
项和为
.
(1)若;
(2)若.
设函数,其中
(1)讨论在其定义域上的单调性;
(2)当时,求
取得最大值和最小值时的
的值.
设椭圆E的方程为点O为坐标原点,点A的坐标为
,点B的坐标为(0,b),点M在线段AB上,满足
直线OM的斜率为
.
(Ⅰ)求E的离心率e;
(Ⅱ)设点C的坐标为(0,-b),N为线段AC的中点,证明:MNAB.
如图,四棱锥的底面边长为8的正方形,四条侧棱长均为
.点
分别是棱
上共面的四点,平面
平面
,
平面
.
(1)证明:
(2)若,求四边形
的面积.