以△ABC的AB、AC为边分别作正方形ADEB、ACGF,连接DC、BF。
(1)求证:CD=BF。
(2)利用旋转的观点,在此题中,△ADC可看成由哪个三角形绕哪点旋转多少角度得到的。
已知某个一次函数图象经过点A(0,2)、B(2,0)是这个函数图象上的两点.
(1)求一次函数的解析式。
(2)点C(x1,y1)、D(x2,y2)是这个函数图象上的两点.若x1<x2,比较y1,y2的大少。
如图,、
是等腰梯形
的两条对角线.证明:
=
已知二次函数.
当
时,函数值
随
的增大而减小,求
的取值范围;
以抛物线
的顶点
为一个顶点作该抛物线的内接正
(
,
两点在抛物线上),请问:△
的面积是与
无关的定值吗?若是,请求出这个定值;若不是,请说明理由;
若抛物线
与
轴交点的横坐标均为整数,求整数
的值.
如图,在中,
,以
为直径的⊙
分别交
、
于点
、
,点
在
的延长线上,且
.
求证:直线
是⊙
的切线;
若
,
,求
的长.
我省某工艺厂为全运会设计了一款工艺品的成本是20元∕件.投放市场进行试销后发现每天的销售量(件)是售价
(元∕件)的一次函数,当售价为22元∕件时,每天销售量为380件;当售价为25元∕件时,每天的销售量为350件.
求
与
的函数关系式
该工艺品售价定为每件多少元时,每天获得的利润最大?最大利润是多少元?(利润=销售收入-成本)