游客
题文

在Rt△ABC中,∠CAB=90°,AB=AC.
(1)如图①,过点A在△ABC外作直线MN,BM⊥MN于M,CN⊥MN于N.①判断线段MN、BM、CN之间有何数量关系,并证明;

②若AM=,BM=,AB=,试利用图①验证勾股定理=
(2)如图②,过点A在△ABC内作直线MN,BM⊥MN于M,CN⊥MN于N,判断线段MN、BM、CN之间有何数量关系?(直接写出答案)

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

解分式方程:=1.

先化简再求值(+)÷,其中m=

如图,△ABC中,AB=AC=5,BC=8.

(1)求△ABC的面积;
(2)若过点C作AB平行线CD,并使CD=BC,连结BD,交AC于点E.
①那么∠ACB与∠D有怎样的数量关系?证明你的结论;
②那么△ABE与△BCE的面积比是多少?写出求解过程.

如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.

(1)试说明:∠AEQ=90°;
(2)猜想EF与图中哪条线段相等(不能添加辅助线产生新的线段),并说明理由.

如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.

求证:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是线段CD的垂直平分线.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号