如图:在数轴上A点表示数,B点示数
,C点表示数c,b是最小的正整数,
且a、b满足|a+2|+ (c-7)2=0.
(1)a= ,b= ,c= ;
(2)若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合;
(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.
则AB= ,AC= ,BC= .(用含t的代数式表示)
(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
某自行车经销商计划投入7.1万元购进100辆 型和30辆 型自行车,其中 型车单价是 型车单价的6倍少60元.
(1)求 、 两种型号的自行车单价分别是多少元?
(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行车的总数不变,那么至多能购进 型车多少辆?
如图,一艘游轮在 处测得北偏东 的方向上有一灯塔 .游轮以 海里 时的速度向正东方向航行2小时到达 处,此时测得灯塔 在 处北偏东 的方向上,求 处与灯塔 相距多少海里?(结果精确到1海里,参考数据: ,
某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:
时间(小时) |
频数(人数) |
频率 |
|
4 |
0.1 |
|
10 |
0.25 |
|
|
0.15 |
|
8 |
|
|
12 |
0.3 |
合计 |
40 |
1 |
(1)表中的 , ;
(2)请将频数分布直方图补全;
(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?
如图1,抛物线 的顶点 在 轴上,交 轴于 ,将该抛物线向上平移,平移后的抛物线与 轴交于 , ,顶点为 .
(1)求点 的坐标和平移后抛物线的解析式;
(2)点 在原抛物线上,平移后的对应点为 ,若 ,求点 的坐标;
(3)如图2,直线 与平移后的抛物线交于 .在抛物线的对称轴上是否存在点 ,使得以 , , 为顶点的三角形是直角三角形?若存在,直接写出点 的坐标;若不存在,请说明理由.
如图, 的直径为 ,点 在 上,点 , 分别在 , 的延长线上, ,垂足为 , .
(1)求证: 是 的切线;
(2)若 , ,求 的长.