(本题14分)[来源二次函数的图像的顶点为A(2,-4),且经过点B(5,5)
(1)求抛物线解析式,并画出二次函数图象草图.
(2)若点E1(n2+2,y1)、E2(-n2-1,y2)、E3(n4+3,y3)在抛物线上,且0<n<1,试比较y1、y2、y3的大小.
(3)二次函数的图像与X轴交于C、D两点,点G在抛物线上,点H在抛物线对称轴上,若以C、D、G、H为顶点的四边形是平行四边形,求点G的坐标.
阅读下题的计算方法。
计算。
解:原式=
=
=
=
上面这种解题方法叫做拆项法,按此方法计算:
洋洋有4张卡片写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:
(1)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(2分)
(2)从中取出2张卡片,使这2张卡片上数字组成一个最大的数,如何抽取?最大的数是多少?
(3)将这4张卡片上的数字用学过的运算方法,使结果为24.写出运算式子(一种即可).
定义新运算:,如
,计算下列各式。
(1)(2)
(3)
已知、
互为相反数,
、
互为倒数,
=2,求代数式
的值。
某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下。(单位:km)
(1)B地在A地哪个方向,与A地相距多少千米?
(2)巡逻车在巡逻过程中,离开A地最远是多少千米?
(3)若每km耗油0.3升,问共耗油多少升?