(每题4分,本题满分12分)(1)先化简,再求值
5(3a2b-ab2)-4(-ab2+3a2b),其中a=-1,b=2.
(2)某同学在计算多项式M加上x2-3x+7时,因误认为是加上x2+3x+7,结果得到答案是15x2+2x-4.试问:(1)M是怎样的整式?(2)这个问题的正确结果应是多少?
(3)“囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.
①用含有x、y的代数式表示右图中“囧”的面积;
②当x=4,y=时,求此时“囧”的面积
(·湖北黄冈,22题,分)(8 分)如图,反比例函数的图象经过点A(
,4),直线
(
)与双曲线
在第二、四象限分别相交于P,Q 两点,与x轴、y 轴分别相交于C,D 两点.
(1)求k 的值;
(2)当时,求△OCD 的面积;
(3)连接OQ,是否存在实数b,使得? 若存在,请求出b 的值;若不存在,请说明理由.
(·湖北衡阳,27题,分)(本小题满分10分)如图,顶点M在轴上的抛物线与直线
相交于A、B两点,且点A在
轴上,点B的横坐标为2,连结AM、BM.
(1)求抛物线的函数关系式;
(2)判断△ABM的形状,并说明理由;
(3)把抛物线与直线的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(
,
),当
满足什么条件时,平移后的抛物线总有不动点?
(·湖北衡阳,25题,分)(本小题满分8分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度(微克/毫升)与服药时间
小时之间的函数关系如图所示(当
时,
与
成反比).
(1)根据图象分别求出血液中药物浓度上升和下降阶段与
之间的函数关系式;
(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?
(·湖北武汉,20题,分)(本题8分)如图,已知点A(-4,2)B(-1,-2),□ABCD的对角线交于坐标原点O
(1)请直接写出点C、D的坐标
(2)写出从线段AB到线段CD的变换过程
(3)直接写出□ABCD的面积
(·湖南益阳)已知点P是线段AB上与点A不重合的一点,且AP<PB.AP绕点A逆时针旋转角α(0°<α≤90°)得到AP1,BP绕点B顺时针也旋转角α得到BP2,连接PP1、PP2.
(1)如图1,当α=90°时,求∠P1PP2的度数;
(2)如图2,当点P2在AP1的延长线上时,求证:△P2P1P∽△P2PA;
(3)如图3,过BP的中点E作l1⊥BP,过BP2的中点F作l2⊥BP2,l1与l2交于点Q,连接PQ,求证:P1P⊥PQ.