三个小球分别标有﹣2,0,1三个数,这三个球除了标的数不同外,其余均相同,将小球放入一个不透明的布袋中搅匀.
(1)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,再记下小球上所标之数,求两次记下之数的和大于0的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)
(2)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,将小球上所标之数再记下,…,这样一共摸了13次.若记下的13个数之和等于﹣4,平方和等于14.求:这13次摸球中,摸到球上所标之数是0的次数.
(本题8分)已知:A=2a2+3ab-2a-1,B=-a2+ab-1
(1)求4A-(3A-2B)的值;
(2)若A+2B的值与a的取值无关,求b的值.
已知在纸面上有一数轴(如图),折叠纸面.(本题6分)
(1)若1表示的点与-1表示的点重合,则-7表示的点与数 表示的点重合;
(2)若-1表示的点与5表示的点重合,回答以下问题:
①13表示的点与数 表示的点重合;
②若数轴上A、B两点之间的距离为2015(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?
化简及求值(本题16分,每题4分)
(1)
(2)
(3),其中
,
.
(4)若x2-3x+1=0,求代数式3x2-[3x2+2(x2-x)-4x-5]的值.
某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?
如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.
(1)若∠B=70°,求∠CAD的度数;
(2)若AB=4,AC=3,求DE的长.