如图,AC是⊙O的直径,点B,D在⊙O上,点E在⊙O外,∠EAB=∠D=30°.
(1)求证:AE是⊙O的切线;
(2)当AB=3时,求图中阴影部分的面积(结果保留根号和π).
解方程(每题5分,共20分)
(1)
(2)
(3)x2﹣6x﹣4=0(用配方法)
(4)
(本小题满分8分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm
(1)若OB=6cm.
①求点C的坐标;
②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
(2)点C与点O的距离的最大值.
如图,已知AB⊥BD,CD⊥BD.
(1)若AB=16,CD=9,BD=15,请问在BD上是否存在P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;
(2)若AB=16,CD=9,BD=24,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(3)若AB=m,CD=n,BD=,请问在m、n、
满足什么关系时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的三个P点?
(本小题满分8分)如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,,
.△ADP沿点A旋转至△ABP’,连结PP’,并延长AP与BC相交于点Q.
(1)求证:△APP’是等腰直角三角形;
(2)求∠BPQ的大小;
(3)求CQ的长.
(本小题满分6分)如图,△ABC中,CD是边AB上的高,且.
(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.