(本小题满分14分)如图,中,
,四边形
是矩形,
,平面
平面
,
、
分别是
、
的中点,
与平面
所成角的正弦值为
.
(Ⅰ)求证:∥底面
;
(Ⅱ)求与面
的所成角.
(本小题满分12分)(文)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。
(Ⅰ)求再赛2局结束这次比赛的概率;
(Ⅱ)(文)求甲获得这次比赛胜利的概率。
(理)设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为
,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(Ⅲ)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求
的分布列及期望。
(文)已知向量m=(sinA,cosA),n=,m·n=1,且A为锐角.
(Ⅰ)求角A的大小;(Ⅱ)求函数的值域.
(理)已知向量m=(sinA,cosA),n=,m·n=1,且A为锐角.
(Ⅰ)求角A的大小;(Ⅱ)求函数的值域.
(文)等差数列中,
且
成等比数列,求数列
前20项的和
.