(本小题满分12分)设.
(1)令,求
的单调区间;
(2)若当时,
恒成立,求实数
的取值范围;
(本小题满分12分)如图,在三棱锥S -ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,SA=SC=,M为AB的中点.
(1)证明:AC⊥SB;
(2)求二面角S一CM-A的余弦值.
(本小题满分12分)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙公司和丙公司面试的概率均为p,,且三个公司是否让其面试是相互独立的.记
为该毕业生得到面试的公司个数,若P(
=0)=
.
(1)求p的值:
(2)求随机变量的分布列及数学期望.
(本小题满分12分)已知数列{an}的首项al=1,.
(1)证明:数列是等比数列;
(2)设,求数列
的前n项和
.
(本小题满分12分) 已知、
为椭圆的左右焦点,点
为其上一点,且有
(1)求椭圆的标准方程;
(2)是否存在直线与椭圆交于M,两点,且线段使MN的中点为
,若存在,求直线的方程;若不存在,说明理由?
(本小题满分12分)已知F1、F2是椭圆的两个焦点,P是椭圆上任意一点.
(1)若∠F1PF2=,求△F1PF2的面积;
(2)求的最大值和最小值.