6盒火柴按“规则方式”打包,所谓“规则方式”是指每相邻2盒必须是以完全重合的面对接,最后得到的包装形式是一个长方体.已知火柴盒的长、宽、高尺寸分别是a=46mm,b=36mm,c=16mm,请你给出一种能使表面积最小的打包方式,并画出其示意图.
已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E为边BC上一点,且AE=DC。求证:四边形AECD是平行四边形
当等腰梯形ABCD满足__ ▲时(添加一个条件),
则四边形AECD是菱形。
解方程或不等式组:解方程:
解不等式组:
计算:|-4|-(
-1)0+2cos45°+
化简:(
-
)÷
已知:直线(n为正整数)与两坐标轴围成的三角形面积为
,则
__ ▲ .
如果一个点能与另外两个点构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点如图1,矩形ABCD中,AB=3,BC=1,请在边CD上作出A,B两点(除C,D以外)的勾股点(要求:尺规作图,保留作图痕迹,不要求写作法).
(1)如图2,矩形ABCD中,
AB=12cm,BC=4 cm,DM=8 cm,AN=5 cm.动点P从D点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s) ,点H为M,N两点的勾股点,且点H在直线l上.
①当t=4,求PH的长.
②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).