小王剪了两张直角三角形纸片,进行了如下的操作:
操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.
(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为 ;
(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为 ;
操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.
如图,a、b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场。现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等。请用尺规画出O点位置,不写作法,保留痕迹。
请用两种不同的方法解方程:
如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程的两个根,且OA>OB.
(1)求OA、OB的长;
(2)若点E为x轴上的点,且S△AOE=,求经过D、E两点的直线解析式,并判断△AOE与△AOD是否相似;
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.
如图1,正方形ABCD中,点E、F分别在边DC、AD上,且AE⊥BF于G.
(1)求证:BF=AE;
(2)如图2,当点E在DC延长线上,点F在AD延长线上时,(1)中结论是否成立(直接写结论);
(3)在图2中,若点M、N、P、Q分别为四边形AFEB四条边AF、EF、EB、AB的中点,且AF:AD=4:3,求S四边形MNPQ: S正方形ABCD
某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能销售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?