游客
题文

有一种可食用的野生菌,刚上市时,外商李经理以每千克30元的市场价格收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这种野生菌在冷库中最多保存140天,同时,平均每天有3千克的野生菌损坏导致不能出售.
(1)若存放天后,将这批野生菌一次性出售,设这批野生菌的销售总额为元,试求出之间的函数关系式;
(2)李经理将这批野生菌存放多少天后一次性全部出售可以获得22500元的利润?

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

(宜宾)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(),AB=1,AD=2.
(1)直接写出B、C、D三点的坐标;
(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数)的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.

(宜宾)如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.
(1)求证:直线BC是⊙O的切线;
(2)若AE=2,tan∠DEO=,求AO的长.

(宜宾)如图,抛物线与x轴分别相交于点A(﹣2,0),B(4,0),与y轴交于点C,顶点为点P.
(1)求抛物线的解析式;
(2)动点M、N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB、OC上向点B、C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H.
①当四边形OMHN为矩形时,求点H的坐标;
②是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由.

(遂宁)如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.
(1)求证:∠ADC=∠ABD;
(2)求证:AD2=AM•AB;
(3)若AM=,sin∠ABD=,求线段BN的长.

(遂宁)如图,已知抛物线经过A(﹣2,0),B(4,0),C(0,3)三点.
(1)求该抛物线的解析式;
(2)在y轴上是否存在点M,使△ACM为等腰三角形?若存在,请直接写出所有满足要求的点M的坐标;若不存在,请说明理由;
(3)若点P(t,0)为线段AB上一动点(不与A,B重合),过P作y轴的平行线,记该直线右侧与△ABC围成的图形面积为S,试确定S与t的函数关系式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号