已知函数(
是不为零的实数,
为自然对数的底数).
(1)若曲线与
有公共点,且在它们的某一公共点处有共同的切线,求
的值;
(2)若函数在区间
内单调递减,求此时
的取值范围.
设函数,
,若
是函数
的极值点.
(1)求实数a的值;
(2)当且
时,
恒成立,求整数n的最大值.
如图,过椭圆内一点
的动直线
与椭圆相交于M,N两点,当
平行于x轴和垂直于x轴时,
被椭圆
所截得的线段长均为
.
(1)求椭圆的方程;
(2)在平面直角坐标系中,是否存在与点A不同的定点B,使得对任意过点的动直线
都满足
?若存在,求出定点B的坐标,若不存在,请说明理由.
如图,在四棱锥中,底面ABCD是菱形,
,侧面
底面ABCD,并且
,F为SD的中点.
(1)求三棱锥的体积;
(2)求直线BD与平面FAC所成角的正弦值.
某学生参加3个项目的体能测试,若该生第一个项目测试过关的概率为,第二个项目、第三个项目测试过关的概率分别为x,y(
),且不同项目是否能够测试过关相互独立,记
为该生测试过关的项目数,其分布列如下表所示:
(1)求该生至少有2个项目测试过关的概率;
(2)求的数学期望
.
已知向量,
,
,设函数
的部分图象如图所示,A为图象的最低点,B,C为图象与x轴的交点,且
为等边三角形,其高为
.
(1)求的值及函数
的值域;
(2)若,且
,求
的值.