(本题12分)某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(2)从频率分布直方图中,估计本次考试的平均分;
(3)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望.
知抛物线C:y2=4x,若椭圆左焦点及相应的准线与抛物线C的焦点F及准线l分别重合,试求椭圆短轴端点B与焦点F连线中点P的轨迹方程;
已知P、Q是椭圆C:上的两个动点,
是椭圆上一定点,
是其左焦点,且|PF|、|MF|、|QF|成等差数列。
求证:线段PQ的垂直平分线经过一个定点A;
已知点和
,动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线
交于D、E两点,求线段DE的长.
已知椭圆与直线
相交于两点
.
(1)当椭圆的半焦距,且
成等差数列时,求椭圆的方程;
(2)在(1)的条件下,求弦的长度
;
已知点A、B的坐标分别是,
.直线
相交于点M,且它们的斜率之积为-2.
(Ⅰ)求动点M的轨迹方程;
(Ⅱ)若过点的直线
交动点M的轨迹于C、D两点, 且N为线段CD的中点,求直线
的方程.