已知在纸面上有一数轴(如图),折叠纸面.(1)若表示数1的点与表示数-1的点重合,则表示-2的点与表示数 的点重合;
(2)若表示数-1的点与表示数3的点重合,回答以下问题:
① 表示数5的点与表示数 的点重合;
②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?
化简:(1+
)÷
.
计算:
-
.
如图,在直角坐标系中,矩形
的顶点
与坐标原点重合,顶点
在坐标轴上,
,
.动点
从点
出发,以
的速度沿
轴匀速向点
运动,到达点
即停止.设点
运动的时间为
.
(1)过点
作对角线
的垂线,垂足为点
.求
的长
与时间
的函数关系式,并写出自变量
的取值范围;
(2)在点
运动过程中,当点
关于直线
的对称点
恰好落在对角线
上时,求此时直线
的函数解析式;
(3)探索:以
三点为顶点的
的面积能否达到矩形
面积的
?请说明理由.
如图1,点
将线段
分成两部分,如果
,那么称点
为线段
的黄金分割点.
某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线
将一个面积为
的图形分成两部分,这两部分的面积分别为
,
,如果
,那么称直线
为该图形的黄金分割线.
(1)研究小组猜想:在
中,若点
为
边上的黄金分割点(如图2),则直线
是
的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点
任作一条直线交
于点
,再过点
作直线
,交
于点
,连接
(如图3),则直线
也是
的黄金分割线.
请你说明理由.
(4)如图4,点
是
的边
的黄金分割点,过点
作
,交
于点
,显然直线
是
的黄金分割线.请你画一条
的黄金分割线,使它不经过
各边黄金分割点.
某地区一种商品的需求量
(万件)、供应量
(万件)与价格
(元/件)分别近似满足下列函数关系式:
,
.需求量为0时,即停止供应.当
时,该商品的价格称为稳定价格,需求量称为稳定需求量.
(1)求该商品的稳定价格与稳定需求量;
(2)价格在什么范围,该商品的需求量低于供应量?
(3)当需求量高于供应量时,政府常通过对供应方提供价格补贴来提高供货价格,以提高供应量.现若要使稳定需求量增加4万件,政府应对每件商品提供多少元补贴,才能使供应量等于需求量?