甲、乙两个小组各10名同学进行英语口语会话练习,各练习5次,他们每个同学合格的次数分别如下:甲组:4,1,2,2,1,3,3,1,2,1.
乙组:4,3,0,2,1,3,3,0,1,3.
(1)如果合格3次以上(含3次)作为及格标准,请你说明哪个小组的及格率高?
(2)试计算两个小组的方差,请你比较哪个小组的口语会话的合格次数比较稳定?
体育文化用品商店购进篮球和排球共20个,进价和售价如下表,全部销售完后共获利润260元.
篮球 |
排球 |
|
进价(元/个) |
80 |
50 |
售价(元/个) |
95 |
60 |
(1)购进篮球和排球各多少个?
(2)销售6个排球的利润与销售几个篮球的利润相等?
完成下列各题:
(1)如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.求证:BC="AD."
(2)如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.
完成下列各题
(1)
(2)解不等式组:,并将解集在数轴上表示出来
在半径为4的⊙O中,点C是以AB为直径的半圆的中点,OD⊥AC,垂足为D,点E是射线AB上的任意一点,DF//AB,DF与CE相交于点F,设EF=,DF=
.
(1) 如图1,当点E在射线OB上时,求关于
的函数解析式,并写出自变量
的取值范围;
(2) 如图2,当点F在⊙O上时,求线段DF的长;
(3) 如果以点E为圆心、EF为半径的圆与⊙O相切,求线段DF的长.
如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.
(1)求这个二次函数的解析式;
(2)求线段EF、OF的长(用含t的代数式表示);
(3)当△ECA为直角三角形时,求t的值.