已知四边形ABCD顶点都在4×4的正方形网格格点上,如图所示,
(1)请画出四边形ABCD的外接圆,并标明圆心M的位置;
(2)这个圆中弦BC所对的圆周角的度数是 。
如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E,F在边AB上,点G在边BC上.
⑴求证:△ADE≌△BGF;
⑵若正方形DEFG的面积为16,求AC的长.
先化简,再求值:,其中
.
如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组成一条封闭曲线,我们把这条封闭曲线称为“蛋线”,已知点C的坐标为(0,-),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限内是否存在一点P,使得∆PBC的面积最大?若存在,求出∆PBC面积的最大值;若不存在,请说明理由;
(3)当∆BDM为直角三角形时,请直接写出m的值.(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点间的距离为MN=.
如图⊙O是∆ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE//BC,DE交AB的延长线于点E,连结AD、BD
(1)求证∠ADB=∠E;
(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由;
(3)当AB=5,BC=6时,求⊙O的半径.
一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定,如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加一棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购了多少棵树苗?