(本小题满分12分)如图,开口向下顶点为D的抛物线经过点A(0, 5),B(-1,0),C(5,0)与x轴交于B、C两点(B在C左侧),点A和点E关于抛物线对称轴对称.
(1)求该抛物线的解析式;
(2)经过原点O和点E的直线与抛物线的另一个交点为F.
①求点F的坐标;
②求四边形ADEF的面积;
(3)若M为抛物线上一动点,N为抛物线对称轴上一动点,是否存在M,N,使得以A、E、M、N为顶点的四边形为平行四边形,若存在,求出所有满足条件的M、N的坐标;若不存在,请说明理由.
某商店销售一种商品,每件的进价为50元,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;当售价高于进价时,每件的售价每增加1元,每天的销售数量将减少10件.
(1)当每件商品的售价为64元时,求该商品每天的销售数量;
(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.
如图, 为 的直径, 为 上的一点, , , 的延长线交 于点 ,连接 .
(1)求证: 是 的切线;
(2)若 为 的中点,求 的值.
如图,已知一次函数 的图象与反比例函数 的图象交于点 和点 ,与 轴交于点 .
(1)分别求一次函数和反比例函数的解析式:
(2)求 的面积.
某校开展了“我爱古诗词”知识竞赛活动,将某年级参赛学生的成绩划分为三个等级进行统计分析,绘制得到如图表.
成绩等级 |
频数 |
频率 |
|
75 |
|
|
|
0.4 |
|
105 |
0.35 |
请结合图表信息,解答下列问题:
(1)该年级学生共有多少人?
(2)求表中 , 的值,并补全条形统计图;
(3)学校决定从参赛的甲、乙、丙、丁四名同学中任意抽取两名同学做经验介绍,求恰好选中甲、乙两位同学的概率.
小丽用两锐角分别为 和 的三角尺测量一棵树的高度.如图,已知 , , ,那么这棵树大约有多高?(结果精确到 ,