如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点C.抛物线
经过A,C两点,且与x轴交于另一点B(点B在点A右侧).
(1)求抛物线的解析式及点B坐标;
(2)若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;
(3)试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.
如图,P1(x1,y1),P2(x2,y2),…Pn(xn,yn)在函数y=(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3,…△PnAn﹣1An都是等腰直角三角形,斜边OA1、A1A2、A2A3,…An﹣1An都在x轴上
(1)求P1的坐标;
(2)求y1+y2+y3+…y10的值.
如图,将一块直角三角形纸板的直角顶点放在C(1,)处,两直角边分别与x,y轴平行,纸板的另两个顶点A,B恰好是直线y=kx+
与双曲线y=
(m>0)的交点.
(1)求m和k的值;
(2)设双曲线y=(m>0)在A,B之间的部分为L,让一把三角尺的直角顶点P在L上滑动,两直角边始终与坐标轴平行,且与线段AB交于M,N两点,请探究是否存在点P使得MN=
AB,写出你的探究过程和结论.
九年级数学兴趣小组组织了以“等积变形”为主题的课题研究.
第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则S△ABC=S△ABD;反之亦成立.
第二学习小组发现:如图(2),点P是反比例函数上任意一点,过点P作x轴、y轴的垂线,垂足为M、N,则矩形OMPN的面积为定值|k|.
请利用上述结论解决下列问题:
(1)如图(3),四边形ABCD、与四边形CEFG都是正方形点E在CD上,正方形ABCD边长为2,则S△BDF= 2 .
(2)如图(4),点P、Q在反比例函数图象上,PQ过点O,过P作y轴的平行线交x轴于点H,过Q作x轴的平行线交PH于点G,若S△PQG=8,则S△POH= 2 ,k= ﹣4 .
(3)如图(5)点P、Q是第一象限的点,且在反比例函数图象上,过点P作x轴垂线,过点Q作y轴垂线,垂足分别是M、N,试判断直线PQ与直线MN的位置关系,并说明理由.
类比二次函数的图象的平移,我们对反比例函数的图象作类似的变换:
(1)将y=的图象向右平移1个单位,所得图象的函数表达式为 _________ ,再向上平移1个单位,所得图象的函数表达式为 _________ ;
(2)函数y=的图象可由y=
的图象向 _________ 平移 _________ 个单位得到;y=
的图象可由哪个反比例函数的图象经过怎样的变换得到;
(3)一般地,函数y=(ab≠0,且a≠b)的图象可由哪个反比例函数的图象经过怎样的变换得到?
定义:如图,若双曲线(k>0)与它的其中一条对称轴y=x相交于两点A,B,则线段AB的长称为双曲线
(k>0)的对径.
(1)求双曲线的对径;
(2)若某双曲线(k>0)的对径是
.求k的值.