(本小题满分12分)设等比数列的前
项和为
,已知
(1)求数列的通项公式;
(2)在与
之间插入
个数,使这
个数组成一个公差为
的等差数列,
①在数列{}中是否存在三项
,
,
(其中
成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;
②记,求满足
的
值.
(本小题满分12分)如图,在平面直角坐标系内,已知,
两点,且圆
的方程为,点
为圆
上的动点.
(1)求过点的圆的切线的方程;
(2)求的最大值及其对应的点
的坐标.
(本小题满分12分)如图,四棱锥的底面是边长为1的正方形,
,
,
为
的中点,
为
上一点,且
.
(1)证明:平面
;
(2)证明:平面
;
(3)求三棱锥的体积.
(本小题满分12分)已知函数(
、
为常数).
(1)若,解不等式
;
(2)若,当
时,
恒成立,求
的取值范围.
(本小题12分).如图,矩形的顶点
为原点,
边所在直线的方程为
,顶点
的纵坐标为
.
(1)求边所在直线的方程;
(2)求矩形的面积.