(本小题满分10分)在△ABC中,.
(1)求的值, (2)求
的值
已知二次函数y=f(x)的图象经过坐标原点,其导函数f ′(x)=2x+2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设bn=2n·an,Tn是数列{bn}的前n项和,求Tn.
在△ABC中,a、b、c分别是角A、B、C的对边,向量,
,且
(1)求角B的大小;
(2)设(
),且f(x)的最小正周期为π,求f(x)的单调区间.
已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)>0,且f(x·y)=f(x)+f(y).
(1)证明:f(x)在定义域上是增函数;
(2)如果f()=-1,求满足不等式f(x)-f(
)≥2的x的取值范围.
若函数f(x)=-x3+6x2-9x+m在区间[0,4]上的最小值为2,求它在该区间上的最大值.
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(a-c)
=c
(1)求角B的大小;
(2)若||=
,求△ABC面积的最大值.