(本小题满分l3分)某大学志愿者协会有6窑男同学,4名女同学,在这10名同学中,3名同学自数学学院,其余7名同学
自物理、化学等其他互不相同的7个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活
动(每位同学被选到的可能性相同).
(1)求选出的3名同学是自互不相同学院的概率:
(2)设为选出的3名同学中女同学的人数,求随机变量
的分布列和数学期望.
(本小题满分14分)
已知函数
(1)求f(x)在[0,1]上的极值;
(2)若对任意成立,求实数a的取值范围;
(3)若关于x的方程在[0,2]上恰有两个不同的实根,求实数b的取值范围.
(本小题满分13分)
过椭圆内一点M(1,1)的弦AB
(1)若点M恰为弦AB的中点,求直线AB的方程;
(2)求过点M的弦的中点的轨迹方程。
(本小题满分13分)
数列
(I)求数列的通项公式;
(II)若的最大值。
(本小题满分13分)
已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
(本小题满分13分)
已知,
,f(x)=
⑴ 求f(x)的最小正周期和单调增区间;
⑵ 如果三角形ABC中,满足f(A)=,求角A的值.