已知椭圆经过点,其离心率为,经过点,斜率为的直线与椭圆相交于两点.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围;(Ⅲ)设椭圆与轴正半轴、轴正半轴分别相交于两点,则是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
已知抛物线()上一点到其准线的距离为. (Ⅰ)求与的值; (Ⅱ)设抛物线上动点的横坐标为(),过点的直线交于另一点,交轴于点(直线的斜率记作).过点作的垂线交于另一点.若恰好是的切线,问是否为定值?若是,求出该定值;若不是,说明理由.
已知向量函数 (Ⅰ)求的单调增区间; (Ⅱ)若时,的最大值为4,求的值.
A是锐角,求的值;
已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,在曲线上求一点,使它到直线的距离最小,并求出该点坐标和最小距离
已知矩阵,A的一个特征值,属于λ的特征向量是,求矩阵A与其逆矩阵.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号