已知椭圆经过点
,其离心率为
,经过点
,斜率为
的直线
与椭圆
相交于
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)设椭圆与
轴正半轴、
轴正半轴分别相交于
两点,则是否存在常数
,使得向量
与
共线?如果存在,求
值;如果不存在,请说明理由.
设函数的定义域为E,值域为F.
(1)若E={1,2},判断实数λ=lg22+lg2lg5+lg5﹣与集合F的关系;
(2)若E={1,2,a},F={0,},求实数a的值.
(3)若,F=[2﹣3m,2﹣3n],求m,n的值.
已知关于x的方程:x2﹣(6+i)x+9+ai=0(a∈R)有实数根b.
(1)求实数a,b的值.
(2)若复数z满足|﹣a﹣bi|﹣2|z|=0,求z为何值时,|z|有最小值,并求出|z|的值.
已知函数,
.
(1)若,求证:函数
是
上的奇函数;
(2)若函数在区间
上没有零点,求实数
的取值范围.
已知命题,命题
。
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,“”为真命题,“
”为假命题,求实数x的取值范围。
设正整数数列满足:
,且对于任何
,有
.
(1)求,
;
(2)求数列的通项
.