过双曲线x2-y2=1上一点M作直线x+y=2的垂线,垂足为N,求线段MN的中点P的轨迹方程.
某校从高一年级期末考试的学生中抽出名学生,其成绩(均为整数)的频率分布直方图如图所示:
(Ⅰ)估计这次考试的及格率(分及以上为及格)和平均分;
(Ⅱ)从成绩是分以上(包括
分)的学生中选两人,求他们在同一分数段的概率.
抛掷骰子,是大家非常熟悉的日常游戏了.
某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.
方案1:总点数是几就送礼券几十元.
总点数 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
礼券额 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
100 |
110 |
120 |
方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.
总点数 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
礼券额 |
20 |
40 |
60 |
80 |
100 |
120 |
100 |
80 |
60 |
40 |
20 |
方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.
总点数 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
礼券额 |
120 |
100 |
80 |
60 |
40 |
20 |
40 |
60 |
80 |
100 |
120 |
如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.
已知椭圆:
,椭圆
以
的长轴为短轴,且与
有相同的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设O为坐标原点,点分别在椭圆
和
上,
,求直线
的方程.
袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求: (1)3个全是红球的概率; (2)3个颜色全相同的概率;
(3)3个颜色不全相同的概率; (4)3个颜色全不相同的概率.
已知p:|1-|≤2, q:x2-2x+1-m2≤0(m>0),若﹁p是﹁q的必要而不充分条件,求实数m的取值范围.