[2014·全国卷] 数列{an}满足a1=1,a2=2,an+2=2an+1-an+2.
(1)设bn=an+1-an,证明{bn}是等差数列;
(2)求{an}的通项公式.
.(本小题满分12分)
如图,在正方体
中,E、F分别是中点。
(Ⅰ)求证:
;
(Ⅱ)求证:
;
(III)棱
上是否存在点P使
,若存在,确定点P位置;若不存在,说明理由。
.(本小题满分12分)
已知函数f(x)=lg(ax-bx)(a>1>b>0).
(1)求y=f(x)的定义域;
(2)在函数y=f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x轴;
(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.
.(本小题满分12分)
如图,多面体AED-BFC的直观图及三视图如图所示,M、N分别为AF、BC的中点。
(Ⅰ)求证:MN∥平面CDEF;
(Ⅱ)求多面体A-CDEF的体积;
(Ⅲ)求证:
。
已知
,
是一次函数,并且点
在函数
的图象上,点
在函数
的图象上,求
的解析式
.(本小题满分10分)
如图,已知梯形ABCD中,AD∥BC,
,AD=a,BC=2a,
,在平面ABCD内,过C作
,以
为轴将梯形ABCD旋转一周,求所得旋转体的表面积及体积。