游客
题文

(本小题满分13分)
设数列的前项和为,若对任意的正整数,总存在正整数,使得,则称是“数列”。
(1)若数列的前项和为,证明:是“数列”;
(2)设是等差数列,其首项,公差,若是“数列”,求的值;
(3)证明:对任意的等差数列,总存在两个“数列”,使得成立。

科目 数学   题型 解答题   难度 困难
知识点: 数列综合
登录免费查看答案和解析
相关试题

已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点,过点的直线与椭圆相交于不同的两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存直线,满足?若存在,求出直线的方程;若不存在,请说明理由.

已知函数
(Ⅰ)若函数处取得极值,试求的值,并求在点处的切线方程;
(Ⅱ)设,若函数上存在单调递增区间,求的取值范围.

数列的前项和记为
(Ⅰ)求的通项公式;
(Ⅱ)等差数列的各项为正,其前项和为,且,又成等比数列,求.

设函数其中
(Ⅰ)求的单调区间;
(Ⅱ) 讨论的极值.

如右图,简单组合体ABCDPE,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)若N为线段PB的中点,求证:EN⊥平面PDB;
(2)若,求平面PBE与平面ABCD所成的锐二面角的大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号