设不等式组
所表示的平面区域为Dn,记Dn内整点的个数为an(横纵坐标均为整数的点称为整点).
(1)n=2时,先在平面直角坐标系中作出区域D2,再求a2的值;
(2)求数列{an}的通项公式;
(3)记数列{an}的前n项的和为Sn,试证明:对任意n∈N*,
恒有
<
成立.
已知函数
,
,函数
的图像在点
处的切线平行于
轴.
(1)求
的值;
(2)求函数
的极小值;
(3)设斜率为
的直线与函数
的图象交于两点
,(
),证明:
.
如图,已知抛物线
:
和⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,分别交抛物线为E、F两点,圆心点
到抛物线准线的距离为
.
(1)求抛物线
的方程;
(2)当
的角平分线垂直
轴时,求直线
的斜率;
(3)若直线
在
轴上的截距为
,求
的最小值.
如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF;
已知数列{an}满足:a1=20,a2=7,an+2﹣an=﹣2(n∈N*).
(Ⅰ)求a3,a4,并求数列{an}通项公式;
(Ⅱ)记数列{an}前2n项和为S2n,当S2n取最大值时,求n的值.
在
中,角
所对的边为
,且满足

(1)求角
的值;
(2)若
且
,求
的取值范围.