(本小题满分12分)设函数,(1)证明:是上的增函数;(2)设,当时,恒成立,求的取值范围.
如图,在四棱锥中,底面,且底面为正方形,分别为的中点. (1)求证:平面; (2)求平面和平面的夹角.
设函数. (1)求函数的最小正周期和单调递增区间; (2)当时,的最大值为2,求的值,并求出的对称轴方程.
已知椭圆的对称轴为坐标轴,焦点是,又点在椭圆上. (1)求椭圆的方程; (2)已知直线的斜率为,若直线与椭圆交于、两点,求面积的最大值.
已知函数,曲线在点处的切线方程为. (1)求的值; (2)求在上的最大值.
给定两个命题,:对任意实数都有恒成立;:.如果∨为真命题,∧为假命题,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号