(本小题满分12分)在长方体中,底面是正方形,是中点,点是棱上任意一点.(1)证明:; (2)若求的长.
已知数列的各项均为正数,是数列的前n项和,且. (1)求数列的通项公式; (2)的值.
设函数. (1)若不等式的解集.求的值; (2)若.求的最小值.
已知命题“存在”,命题:“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线”. (1)若“且”是真命题,求的取值范围; (2)若是的必要不充分条件,求的取值范围.
已知函数. (Ⅰ)求; (Ⅱ)求函数图象上的点处的切线方程.
已知数列的前n项和. (Ⅰ)求数列的通项公式; (Ⅱ)令,试比较与的大小,并予以证明.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号