已知双曲线
的中心是原点,右焦点为
,一条渐近线
,设过点
的直线
的方向向量
.
(1)求双曲线
的方程;
(2)若过原点的直线
,且
与
的距离为
,求
的值;
(3)证明:当
时,在双曲线
的右支上不存在点
,使之到直线
的距离为
.
定义:对于函数,
.若
对定义域内的
恒成立,则称函数
为
函数.(1)请举出一个定义域为
的
函数,并说明理由;(2)对于定义域为
的
函数
,求证:对于定义域内的任意正数
,均有
;
(3)对于值域的
函数
,求证:
.
已知椭圆E:(其中
),直线L与椭圆只有一个公共点T;两条平行于y轴的直线
分别过椭圆的左、右焦点F1、F2,且直线L分别相交于A、B两点.
(Ⅰ)若直线L在轴上的截距为
,求证:直线L斜率的绝对值与椭圆E的离心率相等;(Ⅱ)若
的最大值为1200,求椭圆E的方程.
解关于x的不等式ax2-2≥2x-ax(a∈R).
某电信部门执行的新的电话收费标准中,其中本地网营业区内的通话费标准:前3分钟为0.20元(不足3分钟按3分钟计算),以后的每分钟收0.10元(不足1分钟按1分钟计算。)在一次实习作业中,某同学调查了A、B、C、D、E五人某天拨打的本地网营业区内的电话通话时间情况,其原始数据如下表所示:
A |
B |
C |
D |
E |
|
第一次通话时间 |
3分 |
3分45秒 |
3分55秒 |
3分20秒 |
6分 |
第二次通话时间 |
0分 |
4分 |
3分40秒 |
4分50秒 |
0分 |
第三次通话时间 |
0分 |
0分 |
5分 |
2分 |
0分 |
应缴话费(元) |
⑴在上表中填写出各人应缴的话费;
⑵设通话时间为t分钟,试根据上表完成下表的填写(即这五人在这一天内的通话情况统计表):
时间段 |
频数累计 |
频数 |
频率 |
累计频率 |
0<t≤3 |
┯ |
2 |
0.2 |
0.2 |
3<t≤4 |
||||
4<t≤5 |
||||
5<t≤6 |
||||
合计 |
正正 |
⑶若该本地网营业区原来执行的电话收费标准是:每3分钟为0.20元(不足3分钟按3分钟计算)。问这五人这天的实际平均通话费与原通话标准下算出的平均通话费相比,是增多了还是减少了?增或减了多少?