(本小题满分10分)【选修4—1:几何证明选讲】
在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线
,已知过点
的直线
的参数方程为
(
为参数),直线
与曲线
分别交于
两点。
(1)写出曲线和直线
的普通方程;
(2)若成等比数列,求
的值.
已知a,b,c分别为△ABC三个内角A,B,C的对边,a=bsinA-acosB.
(1)求B;
(2)若b=2,△ABC的面积为,求a,c.
已知椭圆:
的一个顶点为
,离心率为
.直线
与椭圆
交于不同的两点M,N.
(Ⅰ)求椭圆的方程;
(Ⅱ)当△AMN得面积为时,求
的值.
等比数列的各项均为正数,且
(1)求数列的通项公式;
(2)设求数列
的前n项和.
如图,在直三棱柱中,
,
分别是棱
上的点(点
不同于点
),且
为
的中点.
求证:(1)平面平面
;
(2)直线平面
.
设函数.
(1)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(2)在△ABC中,设角A,B的对边分别为a,b,若B=2A,且,求角C的大小.