(本题满分14分)
某企业准备投资1200万元兴办一所中学,对当地教育市场进行调查后,得到了如下的数据表格(以班级为单位):
学段 |
硬件建设(万元) |
配备教师数 |
教师年薪(万元) |
初中 |
26 / 班 |
2 / 班 |
2 / 人 |
高中 |
54 / 班 |
3 / 班 |
2 / 人 |
因生源和环境等因素,全校总班级至少20个班,至多30个班。
(Ⅰ)请用数学关系式表示上述的限制条件;(设开设初中班x个,高中班y个)
(Ⅱ)若每开设一个初、高中班,可分别获得年利润2万元、3万元,请你合理规划办学规模使年利润最大,最大为多少?
设数列的前
和为
,已知
(1)设数列的前
和为
,证明:
;
(2)是否存在自然数,使得
若存在,求出的值;若不存在,请说明理由。
已知等差数列的前
和为
,且有
若,且数列
中的每一项总小于它后面的项,求实数
的取值范围。
设函数
(1)当时,
在
上恒成立,求实数的取值范围;
(2)当时,若函数
在
上恰有两个不同的零点,求实数
的取值范围;
已知集合,
,
,则
的最小值是多少?
已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明:BN⊥平面C1B1N;
(Ⅱ)设直线C1N与平面CNB1所成的角为,求sin
的值;
(Ⅲ)M为AB中点,在CB上是否存在一点P,使得MP∥平面CNB1,若存在,求出BP的长;若不存在,请说明理由.