在直角坐标系中,点
,点
为抛物线
的焦点,
线段恰被抛物线
平分.
(Ⅰ)求的值;
(Ⅱ)过点作直线
交抛物线
于
两点,设直线
、
、
的斜率分别为
、
、
,问
能否成公差不为零的等差数列?若能,求直线
的方程;若不能,请说明理由.
已知函数,设曲线
在与
轴交点处的切线为
,
为
的导函数,满足
.
(1)求的单调区间.
(2)设,
,求函数
在
上的最大值;
如图,是棱长为1的正方体,四棱锥
中,
平面
,
。
(Ⅰ)求证:
(Ⅱ)求直线与平面
所成角的正切值。
设数列满足:
。
(1)求证:;
(2)若,对任意的正整数
恒成立,求
的取值范围。
若向量,其中
,记函数
,若函数
的图象与直线
为常数)相切,并且切点的横坐标依次成公差为
的等差数列。
(1)求的表达式及
的值;
(2)将函数的图象向左平移
,得到
的图象,当
时,
的交点横坐标成等比数列,求钝角
的值。