(本小题满分12分)已知函数,
(1)为何值时,
有两个零点且均比-1大;
(2)求在
上的最大值
.
选修4-1:几何证明选讲
如图所示,已知⊙O1与⊙O2相交于A,B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1,⊙O2于点D,E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长;
设函数,其中
.
(Ⅰ)当时,判断函数
在定义域上的单调性;
(Ⅱ)当时,求函数
的极值点
(Ⅲ)证明:对任意的正整数,不等式
都成立.
如图,已知椭圆的中心在坐标原点,焦点在轴上,它的一个顶点为
(0,
),且离心率等于
,过点
(0,2)的直线
与椭圆相交于
,
不同两点,点
在线段
上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设,试求
的取值范围.
如图,斜三棱柱的底面是直角三角形,
,点
在底面内的射影恰好是
的中点,且
.
(1)求证:平面平面
;
(2)若二面角的余弦值为
,求斜三棱柱
的侧棱
的长度.
甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左手从甲袋中取球,用右手从乙袋中取球,
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若一次在同一袋中取出两球,如果两球颜色相同则称这次取球获得成功。某人第一次左手先取两球,第二次右手再取两球,记两次取球的获得成功的次数为随机变量X,求X的分布列和数学期望.