(本小题满分14分)已知圆:,直线.(1)若直线与圆交于不同的两点、,当=时,求的值.(2)若,是直线上的动点,过作圆的两条切线、,切点为、,探究:直线是否过定点;(3)若、为圆:的两条相互垂直的弦,垂足为(1,),求四边形的面积的最大值.
证明函数是增函数,并求函数的最大值和最小值。
画出函数的图象,并求其函数的值域。
证明函数是奇函数。
已知集合A=,B={x|2<x<10},C={x|x<a},全集为实数集R. (Ⅰ)求A∪B,(CRA)∩B; (Ⅱ)如果A∩C≠φ,求a的取值范围.
(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A、B、C三点,过坐标原点O的直线与抛物线交于M、N两点.分别过点C、D作平行于轴的直线、.(1)求抛物线对应的二次函数的解析式; (2)求证以ON为直径的圆与直线相切; (3)求线段MN的长(用表示),并证明M、N两 点到直线的距离之和等于线段MN的长.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号