(本小题满分12分)在△ABC中,分别为内角
的对边,面积
.
(1)求角的大小;
(2)设函数,求
的最大值,及取得最大值时角
的值.
已知圆.
(1)若圆的切线在
轴和
轴上的截距相等,且截距不为零,求此切线的方程;
(2)从圆外一点
向该圆引一条切线,切点为
,
为坐标原点,且有
,求使
的长取得最小值的点
的坐标.
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中
是仪器的月产量.
(注:总收益=总成本+利润)
(1)将利润表示为月产量
的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?
已知x0,x0+是函数f(x)=cos2
-sin2ωx(ω>0)的两个相邻的零点.
(1)求f的值;
(2)若对∀x∈,都有|f(x)-m|≤1,求实数m的取值范围.
已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<α<x<π.
(1)若α=,求函数f(x)=b·c的最小值及相应x的值;
(2)若a与b的夹角为,且a⊥c,求tan 2α的值.
已知函数f(x)=2sin(2ωx+φ)(ω>0,φ∈(0,π))的图象中相邻两条对称轴间的距离为
,且点
是它的一个对称中心.
(1)求f(x)的表达式;
(2)若f(ax)(a>0)在上是单调递减函数,求a的最大值.