(本小题满分12分)如图,某广场要划定一矩形区域ABCD,并在该区域内开辟出三块形状大小相同的小矩形绿化区,这三块绿化区四周和绿化区之间均设有1米宽的走道,已知三块绿化区的总面积为200平方米,求该矩形区域ABCD占地面积的最小值.
(本小题满分14分)
已知数列中,
,点
在直线
上.
(Ⅰ)计算的值;
(Ⅱ)令,求证:数列
是等比数列;
(Ⅲ)求数列的通项公式.
(本小题满分12分)
雅山中学采取分层抽样的方法从应届高三学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如下表所示。
男 |
女 |
|
文科 |
2 |
5 |
理科 |
10 |
3 |
(Ⅰ)若在该样本中从报考文科的学生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;
(Ⅱ)用假设检验的方法分析有多大的把握认为雅山中学的高三学生选报文理科与性别有关?
参考公式和数据:
![]() |
0.15 |
0.10![]() |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.07 |
2.71 |
3.84 |
5.02 |
6.64 |
7.88 |
10.83 |
(本小题满分12分)
已知.
(Ⅰ)求的值; (Ⅱ)求
的值.
某校组织一次篮球投篮测试,已知甲同学每次投篮的命中率均为1/2。
(1)若规定每投进1球得2分,甲同学投篮4次,求总得分X的概率分布和数学期望。
(2)假设连续3次投篮未中或累计7次投篮未中,则停止投篮测试,问:甲同学恰好投篮10次,被停止投篮测试的概率是多少?
正三棱柱ABC-A1B1C1中,AB=2,AA1=1,D为A1C1的中点,线段B1C上的点M满足B1M=λB1C,若向量AD与BM的夹角小于45º,求实数λ的取值范围