(本小题满分14分)已知,函数
.
(Ⅰ)当时,求曲线
在点
处的切线的斜率;
(Ⅱ)讨论的单调性;
(Ⅲ)是否存在实数,使得方程
有两个不等的实数根?若存在,求出
的取值范围;若不存在,说明理由.
某校高三年级学生600名,从参加期中考试的学生中随机抽出某班学生(该班共50名同学),并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下表:
分组 |
频数 |
频率 |
[45,60) |
2 |
0.04 |
[60,75) |
4 |
0.08 |
[75,90) |
8 |
0.16 |
[90,105) |
11 |
0.22 |
[105,120) |
15 |
0.30 |
[120,135) |
a |
b |
[135,150] |
4 |
0.08 |
合计 |
50 |
1 |
(1)写出的值;
(2)估计该校高三学生数学成绩在120分以上学生人数;
(3)该班为提高整体数学成绩,决定成立“二帮一”小组,即从成绩在[135,150]中选两位同学,来帮助成绩在[45,60)中的某一位同学.已知甲同学的成绩为56分, 乙同学的成绩为145分,求甲乙在同一小组的概率.
已知函数的部分图象如图所示.
(1)求函数的解析式,并写出
的单调递减区间;
(2)已知的内角分别是A,B,C,角A为锐角,
的值.
选修4-5;不等式选讲
已知
(1)求的解集;
(2)若-
恒成立,求
的取值范围.
选修4-4:坐标系与参数方程选讲
已知在直角坐标系中,直线
的参数方程为
,(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求直线的普通方程和曲线
的直角坐标方程;
(Ⅱ)设点是曲线
上的一个动点,求它到直线
的距离
的取值范围.
选修4-1:几何证明选讲
如图,是
的直径,
与
相切于
,
为线段
上一点,连接
、
分别交
于
、
两点,连接
交
于点
.
(Ⅰ)求证:四点共圆;
(Ⅱ)若为
的三等分点且靠近
,
,
,求线段
的长.