已知:点B.F.C.E在同一条直线上,FB=CE,AC=DF,现给出下列条件:①AB=ED;②∠A=∠D=90°;③∠ACB=∠DFE.请你从上面三个条件中选择一个合适的条件,添加到已知条件中,使得AB∥ED成立,并给出证明.
答:我选择的条件是: ;
我的证明过程如下:
如图,二次函数 的图象过 、 、 , 三点.
(1)求二次函数的解析式;
(2)若线段 的垂直平分线与 轴交于点 ,与二次函数的图象在 轴上方的部分相交于点 ,求直线 的解析式;
(3)在直线 下方的二次函数的图象上有一动点 ,过点 作 轴,交直线 于 ,当线段 的长最大时,求点 的坐标.
如图, 的半径为 ,其内接锐角三角形 中, 、 、 所对的边分别是 、 、 .
(1)求证: ;
(2)若 , , ,利用(1)的结论求 的长和 的值.
如图,已知直线 .
(1)当反比例函数 的图象与直线 在第一象限内至少有一个交点时,求 的取值范围.
(2)若反比例函数 的图象与直线 在第一象限内相交于点 , 、 , ,当 时,求 的值,并根据图象写出此时关于 的不等式 的解集.
如图,点 、 分别是等边 边 、 上的动点(端点除外),点 、点 以相同的速度,同时从点 、点 出发.
(1)如图1,连接 、 .求证: ;
(2)如图1,当点 、 分别在 、 边上运动时, 、 相交于点 , 的大小是否变化?若变化,请说明理由;若不变,求出它的度数;
(3)如图2,当点 、 在 、 的延长线上运动时,直线 、 相交于 , 的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
如图,矩形 中, , , 是 上一点,且 , 是 上一动点,若将 沿 对折后,点 落在点 处,则点 到点 的最短距离为 .