(本小题满分12分)在平面直角坐标系中,已知圆
和圆
.
(Ⅰ)若直线过点
,且被圆
截得的弦长为
,求直线
的方程;
(Ⅱ)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和
,它们分别与圆
和圆
相交,且直线
被圆
截得的弦长与直线
被圆
截得的弦长相等,试求所有条件的点P的坐标.
已知函数(其中
是自然对数的底数),
,
.
(1)记函数,且
,求
的单调增区间;
(2)若对任意,
,均有
成立,求实数
的取值范围.
如图是一个半圆形湖面景点的平面示意图.已知为直径,且
km,
为圆心,
为圆周上靠近
的一点,
为圆周上靠近
的一点,且
∥
.现在准备从
经过
到
建造一条观光路线,其中
到
是圆弧
,
到
是线段
.设
,观光路线总长为
.
(1)求关于
的函数解析式,并指出该函数的定义域;
(2)求观光路线总长的最大值.
如图,在四棱锥中,底面
是菱形,且
.
(1)求证:;
(2)若平面与平面
的交线为
,求证:
.
已知的内角
的对边分别为
,
.
(1)若,
,求
的值;
(2)若,求
的值.
(本小题12分)如图7,已知圆,设A为圆C与x轴负半轴的交点,过点A作圆C的弦AM,并使弦AM的中点恰好落在y轴上.
(1)当在
内变化时,求点M的轨迹E的方程;
(2)已知定点P(-1,1)和Q(1,0),设直线PM、QM与轨迹E的另一个交点分别是M1、M2 . 求证:当M点在轨迹E上变动时,只要M1、M2都存在且M1M2,则直线M1M2恒过一个定点,并求出这个定点。