如图,△ABC的外接圆⊙O的半径为5,CE垂直于⊙O所在的平面,BD∥CE,CE=4,BC=6,且BD=1,.
(1)求证:平面AEC⊥平面BCED;
(2)试问线段DE上是否存在点M,使得直线AM与平面ACE所成角的正弦值为?若存在,确定点M的位置;若不存在,请说明理由.
(本小题满分14分)
某漁业公司年初用98万元购买一艘捕魚船,第一年各种支出费用12万元,以后每年都增加
4万元,每年捕魚收益50万元.
(1)该公司第几年开始获利?
(2)若干年后,有两种处理方案:
①年平均获利最大时,以26万元出售该渔船;
②总纯收入获利最大时,以8万元出售渔船.
问哪种处理方案最合算?
(本小题满分14分)
已知圆:
,直线
被圆所截得的弦的中点为P(5,3).
(1)求直线的方程;
(2)若直线:
与圆
相交于两个不同的点,求b的取值范围.
(本小题满分14分)
如图,已知正方体,
是底
对角线的交点.
求证:(1)面
;
(2 )面
.
(本小题满分12分)
右图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象.
(1)求函数f(x)的解析式;
(2)若f=
,0<α<
,求cosα的值.
(本小题满分12分)
如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率
分布直方图如下:请观察图形,求解下列问题:
(1)79.5~89.5这一组的频率、频数分别是多少?
(2)估计这次环保知识竞赛的及格率(60分及以上为及格)和平均分.