如图,△ABC的外接圆⊙O的半径为5,CE垂直于⊙O所在的平面,BD∥CE,CE=4,BC=6,且BD=1,.
(1)求证:平面AEC⊥平面BCED;
(2)试问线段DE上是否存在点M,使得直线AM与平面ACE所成角的正弦值为?若存在,确定点M的位置;若不存在,请说明理由.
(理科)已知椭圆经过点
,离心率为
.过点
的直线
与椭圆
交于不同的两点
.
(Ⅰ)求椭圆的方程;(Ⅱ)求
的取值范围;
(Ⅲ)设直线和直线
的斜率分别为
和
,求证:
为定值.
(理科)已知椭圆C:的离心率为
,且经过点
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:与椭圆C相交于
,
两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且
.求证:直线
过定点.
(理科)已知椭圆的两个焦点分别为
,
.点
与椭圆短轴的两个端点的连线相互垂直.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点的坐标为
,点
的坐标为
.过点
任作直线
与椭圆
相交于
,
两点,设直线
,
,
的斜率分别为
,
,
,若
,试求
满足的关系式.
(理科)已知椭圆:
(
)的离心率
,原点到过点
,
的直线的距离是
.
(1)求椭圆的方程;
(2)若椭圆上一动点
关于直线
的对称点为
,求
的取值范围.
(3)如果直线(
)交椭圆
于不同的两点
,
,且
,
都在以
为圆心的圆上,求
的值.
(理科)已知中心在原点,焦点在轴上的椭圆
过点
,离心率为
,点
为其右顶点.过点
作直线
与椭圆
相交于
两点,直线
,
与直线
分别交于点
,
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围.